Eigenvarieties at some non-Hopf points and Selmer groups (with J. Bellaïche)

1) A conjecture of Bloch-Kato

E/A, g imaginary, π cuspidal and rep of $\text{GL}_n(A_E)$

i) $\pi^0 \cong \pi^c \oplus 1$

st.

ii) π no algebraic regular ($\kappa_{\text{al}} \not\in \frac{1}{2}$)

Assume $f : G_E \to \text{GL}_n(\overline{\mathbb{Q}})$ compact LLC outside p, pure...

\[\Rightarrow \quad L(\pi, 0) = L(\pi, 1) \]

Conj 10^1. and $L(\pi, 1) = \det H^1_f(E, \rho)$

(weaker), $L(\pi, 0) = -1 \Rightarrow H^1_f(E, \rho) \neq 0$

Assumptions

i) $p = w$ splits in E, π unramified.

ii) π_w ramified $\Rightarrow w$ splits in E (not poss p-old, forget it to simplify)

iii) $4/n$ and $0, -1$ are not HTN of S if D_v

Theorem 1: $\text{Rep}(n+2) : AC(\pi) \Rightarrow$ sign conj.

Theorem 2: Assume $V + \{ i \}$ $H^1_f(E, \rho(-i)) = H^1_f(E, \text{ad } \rho) \neq 0$

i) $\lambda \rho$ and all $\text{isc} = n$

iii) π_v has a reg. refinement, non-critical

Then for some explicit $E_{3, x}$, $\dim \overline{\mathcal{L}}_x(E) \leq n \left(m + \frac{n+1}{2} \right) + 1$

eigen of $U(n+2)$

$\det \psi \subseteq H^1_f(E, \rho)$

Thus we can conclude from (E, x)

Coroll: $\pi = 1 \Rightarrow E$ smooth at x.
Remarks: Sign conjectured known \(n = 1 \), \(\text{Hecke} \), \((BC, \Lambda, \text{Adele}, \text{EV} 2001)\) \\
\(n = 2 \) coming from mod forms, Hecke's, \(\text{Sk. Adele, same case.} \) \\
parity \\
- concentrate on \(\text{Kum}_2 \), nothing is conjectural \(n = 1 \) \\
- good choices of \(E \), start from mod forms \(\text{Rep} (4) \) \\
- is main, missing

2) The conjecture \(\text{AC}(\pi) \)

\(\mathbb{Q} \times \mathbb{Q} \rightarrow \exists \ U(n+2) / \mathbb{Q} \) q.spl. all finite places, rich points compact \(\text{Hans } p \).

Endoscopic Functoriality \(L \ U(2) \times \mathbb{L} U(n) \rightarrow L \ U(n+2) \)

Arthur conjectures that \(\Pi \) should transform to an "A-packet" of \(\text{Rep} \ (\Pi) = \frac{1}{2} \pi(y) \) of \(U(n+2) \), whose Galois rep. (assuming \(\text{Rep}(n+2) \) is \(1 + \omega + p \) (not tempered) has \\
\(* \rightarrow \text{not tempered, dis} \).

- Interested in a special element "base element"

Let \(\pi_0 = \pi_{\omega} \otimes \pi_v \) the obvious rep attached to \(1 + \omega + p \) by LLC. \\
\(\text{cong} \ (\text{AC}(\pi_1)) \quad \pi_0 \leftrightarrow L^2 (U(n+2)(A) \backslash U(n+2)(A), \mathbb{C}) \text{ if } E(\Pi,v) = -1 \)

- \(\text{Actually iff, and if it is the case, multiplicity should be } 1 \}
- \(\text{Know } n = 1 \), other cases? \(\text{(Kagawa?)} \)
- \(\text{In Bell's lecture, he will maybe describe } \Pi \text{ when } n = 1. \ (\text{Kagawa?}) \)
Rough idea where "the Selmer ele"s come from"
along the lines of Ribet's work on converse of Herbrand's thm.
idea to use these \(T \) when \(E(\Gamma_0) = -1 \) due to several people (Hans).

Bellaïche Thm (2001) \(m = 1 \).

i) Deform \(1 + w + f \) to some \(\rho' \) att. to a stable rep. \((\rho') \) form on \(U(3) \).
 (congruence, level raising)

ii) Lattice argument, \(3 \) fadles, at least a serious issue that
 \(R \) doesn't have
 to produce \(1 \) by \(f' \), we must show that \(1 \) by \(w \) (e.g.) does not appear.
 show it is "f" and use that \(E^{\times} \) finite. (Kunnik).

Shimura-Uchida \(\sim \) GSp_4 use families to produce deformation alg...so in \(\text{Wls} \) also.

iii) discover cannot use red. family, \(\pi \) not required.

4) Proof Thm 2

\[E(\Gamma_0) = -1, \quad A(C) \Rightarrow \exists \pi_0 \rightarrow L^2 \left(U(n_1)(\mathbb{Q}), \frac{U(n_2)(\mathbb{A})}{U(n_2)(\mathbb{Q})}, \mathcal{C} \right) \]

choose a minimal level \(\Gamma_0 \) for \(\pi_0 \) (type \(B_k \))

[\[H = \mathbb{A} \otimes \text{spherical at all } \mathfrak{p} \text{ away from places } \mathfrak{p} \]
\[\rightarrow \text{ eigenvar. } E, \quad \text{Rep}(n_2) \rightarrow \mathcal{T} : G_E \rightarrow \mathcal{O}(E) \]

choose a point \(\pi \) choose a \(\rho \)-refinement of \(\Gamma_0, V \)

\[(A, \rho^0, \rho_1, \ldots, \rho_n, \rho^1) \]
\[\{ \text{accountable as } 1 \text{ proceeds } \rho^1 \}
\[\text{rank of } \rho \]
\[T : G_e \to A, \quad A = \mathcal{O}_x, \quad m = m_{x_1}, \quad K = \text{Frac} A\]

\[T \mod m = 1 + \omega + \varphi \]

analyse the galois rep. quite carefully, in the span of \(MW, W \).

we want to compute \(S := \frac{A[G]}{K \pi T} \)

\[S = \left(\begin{array}{ccc}
M_0(A) & A_{wp} & A_n \\
A_{p_0} & A & A_{p_1} \\
A_{p_1} & A_{wp} & A
\end{array} \right) \subset \mathcal{M}_{2n+1} \quad (K1) \]

Lecture 3

Moreover \(\tau : g \mapsto c(g) \omega(\tau) \)

factor through \(\tau : S \to S \) anti-involution.

\[\tau f = f^{-1} \quad \tau \circ \omega \circ \tau = \omega \circ \tau \circ \omega \]

Lemma about ideles (in the lifting). \(\tau \) induces map \(A_{i,0} \cong A_{u_0,\mathfrak{c}(i)} \)

Aim: compute \(A_{i,0} \).

(4) Reduced roots

Lemma: the total red. root of \(T \) is \(m \).

Use Lecture 6, reducible point \(T \mod m = 1 + \omega + \varphi \)

in this order, refinement is integral. \(\{1, \varphi, \omega, \varphi \} \)

compute permutation \(\sigma \) weights \(k_1 < k_2 < \cdots < 1 < 0 < k_{i_2} \cdots k_{m2} \)

\[i \rightarrow i, 1 \]
\[2 \rightarrow i \]
\[3 \rightarrow 2 \]
\[\varepsilon \rightarrow i \]
\[i+1 \rightarrow i+2 \]
\[i+2 \rightarrow i+1 \]

It is easy.
Hence by Sec. 6. \(A_{\mathfrak{m}} \) is finite length

\[T \mod m = \sum \tilde{\psi}_{\mathfrak{m}}^{\ast} + \mathfrak{m} \tilde{\psi}_{\mathfrak{m}}^{\ast} \]

\(\Lambda \rightarrow \)

all crystalline deformations.

\[\text{but} \quad H^1_\ast(E, \mathrm{ad} \phi) = 0 = H^1_\ast(E, \phi) \quad \text{all are} \]

\[\text{finite} \quad \text{ideal of class group}. \]

ii) whether are ok if one is.

\[\Theta_{\mathfrak{m}, x} \] is generated over \(\Theta_{\mathfrak{m}, x, \mathrm{cm}} \) by \(\mathfrak{m}'s \) \(\mathfrak{u}_\mathfrak{p} 's \Rightarrow \mathfrak{I} = m \Rightarrow \mathfrak{I}_{\mathfrak{m}} = m \]

Corollary

\[m = A_{\mathfrak{m}} A_{\mathfrak{m}} + A_{\mathfrak{p}} A_{\mathfrak{p}} + A_{\mathfrak{p}} A_{\mathfrak{p}}. \]

B) Ext comp

\[\text{Ext} \quad \text{comp} \]

\[\text{Ext}_{\text{Sec}}(P, \delta) \xrightarrow{\sim} \text{Hom} \left(\Lambda_{\mathfrak{m}} / \Lambda_{\mathfrak{m}} \mathrm{ad} \phi, A_{\mathfrak{m}} \right) \]

\[\text{Ext}_{\text{Sec}}(P, \delta) \]

\[\text{Ext}_{\text{Sec}}(P, \delta) \]

\[\text{(iii)} \text{ box about Ext}_{\text{Sec}}(P, \delta) \]

1) All tresses Ext fall into \(\delta \)-cabled pair

ii) at \(\mathfrak{p} \)

ii) duality.

iv) dual are bounded by

1) Outside \(\mathfrak{p} \), BK lies at some auxiliary

ii) \(\mathfrak{A} \quad \mathfrak{p} \quad \text{2 places} \quad v \rightarrow \mathfrak{A} \quad \mathfrak{p} \)

+ duality

iii) properties of \(T \).

abstract
\[H^1_\ell(E, Q_p(1)) = Q^\times \otimes Q_p = 0 \]
\[H^1_\ell(E, Q_p(1)) = 0 \quad \text{(scale, MW)} \Rightarrow \text{ass. 1 by } w' \]
\[H^1_\ell(E, p(1)) = 0 \quad \text{by assumption} \]

local comp. using fundam. exact sequence \[\mathbf{0} \xrightarrow{\varphi_{\ell,1}} \mathbf{0} \xrightarrow{\mathbf{1}} \mathbf{0} \]
\[\Rightarrow \text{dim } H^1_\ell(E, p(1)) \leq n. \]

3) End argument

\[\text{NAK} \Rightarrow A_{\omega} = A_{\ell, p} A_{p} \omega \quad A_{\omega} A_{\omega} \subset A_{\ell, p} A_{p} \]

\[\text{duality} \Rightarrow A_{p} \omega A_{\omega} = A_{\ell, p} A_{p} \]

\[\Rightarrow \text{dim } = m = A_{\ell, p} A_{p} \]

\[A_{\omega} A_{\ell, p} = A_{\ell, p} A_{p} \omega \quad \text{m} \quad A_{p} = \text{NAK} \]

\[\text{min} \quad A_{\ell, p} = \text{dim } \mathbf{E}_\text{rat}(1, p) = \text{max number of indep. ext. of } 1 \text{ by } p \quad \text{we can find in lattice of } \mathbf{K} \text{.} \]

\[A_{p, 1} = \sum_{i=1}^{m} A_{p, i} + A_{p} \omega A_{\omega} \]
\[\text{and } A_{p} \omega A_{\omega} = \prod_{p} A_{p} + A_{p} \omega A_{p} \]

\[\Rightarrow A_{p} \omega A_{\omega} = \prod_{p} A_{p} + A_{p} \omega A_{p} A_{\omega} A_{\omega} A_{p} \]

\[\Rightarrow \text{m } h_{0} < (n + n) \]

\[m = A_{p} \omega (\sum_{i=1}^{m} A_{p, i}) + \prod_{p} A_{p} \text{ } A_{p} \]

\[\Rightarrow \text{dim } \mathbf{H}_0^{1}(\mathbf{E}, q(1, 1, 1)) \]
Prakto

* find examples to know! (computable)
* link with p-adic L-functions
* does not follow from Mani Cony.