Triangular properties of the family of Galois rep. on the eigenvarieties

I) Setting.

Fix G, definite unitary gp. attached to E/\mathbb{Q}, im field, rank d.
$p = v_0$ split prime, $G(\mathbb{Q}_p) \cong GL_d(\mathbb{Q}_p)$.

$K = \prod K_v$ compact open $\subset G(\mathbb{A}^\infty)^e$, $K_p = 1$ when $v_p \not\in S$, maximal henselian.
$e \not\in S$ finite.

$H = \mathfrak{A} \otimes \mathbb{Z} \begin{bmatrix} K^\times \setminus G(\mathbb{A}^\infty) & K^\times \setminus K^\times \end{bmatrix}$

$I = S^{-1}J$

Recall

rigid space \mathfrak{A}^S

$\Psi : H \to O(E)^{\leq 1}$ ring hom.

$Z \subset E$ Zariski dense subset

such that:

- $k(\eta) = (k_1(\eta) \leq \ldots \leq k_d(\eta))$
- $z \in Z \Rightarrow \Psi_z$ is the system of eigenvalues of H

on an eigenform $f \in G, \text{ level } K$.

$W \times \mathbb{G}_m$ p-refinement of the ad. rep. generated by f_z.

weight

$(k_1(\eta), \ldots, k_d(\eta))$

$(a, b) \mapsto \begin{bmatrix} k_1(a) & k_2(a) \end{bmatrix} x^T$

$k_1(\eta) \leq \ldots \leq k_d(\eta)$

are the roots of the Hecke pol. accessible

$\Psi_1(\eta), \ldots, \Psi_d(\eta)$
\(z \in \mathbb{Z}, \exists \text{ so galois rep. } \beta_i : G_{E,S} \to GL_d(\overline{\mathbb{Q}}_p) \)

\[T_i \beta_i(\mathbb{F}_v) = T_i(z) \neq 0 \text{ for } v \neq S. \]

\[S_i = G_{E_i} = G_{E_0} \text{ in crystalline, HT weights } k_i(z) < k_i(21) < \ldots < k_i(n) + 1 \]

(geometric conventions)

\[E_i, \beta_i : \mathbb{F}_i(z) = \mathbb{F}_i^{\text{HTW}} \]

NB: Change a bit \(K_i \) such that they give exactly the HTW.

i.e. \(k_i(z) \) are HTW of \(S_i \).

At such \(z \), assume we have \(\beta_i(z) \) are 2 by 2 matrices.

As refinement of Dary (\(S_i \mid G_{E_0} \)), we will call it \(F_i \).

\(T_i \) : Global Galo pseudo-cancel by restriction at \(p \rightarrow T_i G_{E_0} : G_{E,S} \to \mathbb{Q}(E). \)

Refined family of Galo's representations. (???)

\section{II Regular crystalline classical points}

Fix \(z \in \mathbb{Z} \), study of the family around \(z \), \(A = \mathbb{Q}_{E,z}^{\text{reg}} \)

\section{Assume (REG)} \(F_i \) is non critical, regular (local)

\(\forall i, \beta_i(\mathbb{F}_i) \) is a simple eigenvalue of \(\text{End} \) on \(\Lambda^i F_i \).

(IRR) \(\Lambda^i F_i \) is indep. \(\forall i \leq d \). (global).

In particular \(\exists \beta : G_{E,S} \to M_d(A) \text{ trace } T. \)

(strictly speaking, as alg., we call it by act. no field, not important.)

\(\text{Def} \) \(S_i : \mathbb{Q}_p^x \to \mathbb{A}^1 \), \(S_i(p) = F_i \)

\(S_i |_T = k_i^{-1} \).

\textbf{Thm:} For each \(i \) \(\mathcal{I} \) a cofinite length ideal, \(\mathcal{P} \otimes \mathcal{I} \) is a triangular def. of \((\beta_{\mathcal{P}, E_i}, F_i) \) whose parameter is \((S_i)_{\mathcal{I}}. \)
6. f extends to a neigh. $\to GL_2(\mathcal{O}(W))$

5. $\phi^T = \phi \otimes K_1$ has a HT W O $F_i : \mathbb{A} \to \mathbb{A}^1$ an analytically non-
eigenvalue of $\text{Lie}(\text{flat} f) \simeq \mathbb{A}$

4. Applying Kain's contraction $\Rightarrow \sqrt{\text{Div}(\phi)} \phi = F_i$ is generically ch.\n
Enough to get $\text{Div}(\phi^T) = 0 \forall y \in Y$ but not to get that.\n
\[\text{Div}(\phi^T) \text{ is free he 1 over } \mathbb{A} \]

In fact, yes to do this blow up the problematic ideal and descend the crystalline
period. after. \[\hat{\mathcal{O}} \]

Use that $\text{Div}(\phi^T) = F_i(\mathbb{A})$ for this.

3. Apply some construction to $\mathcal{i} \cong \{0, \ldots, 1\} \forall i \in I$, and use.

Prop. Let (V, F) be a non-critically defined V with k_1, \ldots, k_d, $\psi_1, \ldots, \psi_t \in \mathbb{A}^1$

Let V_{i_1} be a crystalline rep. (over \mathbb{A} say) equipped with a refinement \tilde{F}
non-critical and regular. Let V_i be a deformation of V and assume
there are cont. $\Phi_i : \mathcal{O}_{\hat{\mathcal{O}}} \to A$ such that V_i

1. $\text{Div}_i \mathcal{O}_{\hat{\mathcal{O}}} \psi = F_i(\mathbb{A}) \text{ is free he 1 over } \mathbb{A}$

2. $\mathcal{O}_{\hat{\mathcal{O}}} \text{ mod m} = \mathcal{O}_{\hat{\mathcal{O}}} \psi_{i_1} \ldots \psi_t$ and $\psi = \psi_{i_1} \ldots \psi_t \psi_i$

Then V_i is a trianguline def. (V, F) whose params. is

$(\mathcal{O}_{\hat{\mathcal{O}}} \psi_{i_1} \ldots \psi_t)_{i=1}^t$.

(When k_1, \ldots, k_d are the HT W of V)

Rk: Uniq this $R = \prod \mathbb{A} \{k_1, \ldots, k_d\}$ and deny

$H^1(\text{ad} \mathcal{O}_1) = 0$
Reducible points

Let \(z \in \mathbb{Z} \), anyone, \(p_z = \bar{P}_1 \oplus \cdots \oplus \bar{P}_n \) (MF as HTW are defined).

\[\mathcal{F}_c = (\bar{P}_c(z_1), \ldots, \bar{P}_c(z_r)) \] induced refinements \(\mathcal{F}_{c_i} \) of \(\mathcal{F}_c \).

Assume that \(\mathcal{F}_{c_i} \) are intervals, and \(\mathcal{F} \) ordered, such that:

\[\mathcal{F}_{c_{i-1}} \subset \mathcal{F}_{c_i} \subset \mathcal{F}_{c_{i+1}} \]

(Not always possible)

Define \(\sigma \in \mathcal{Q} \) associated to this combinatorial datum.

HTW are \(\bar{P}_c(z_1) < \cdots < \bar{P}_c(z_r) \).

\(k_{G(a, i, +)} \) is the smallest HTW of \(\bar{P}_c \).

\[k_{G(a, i, -)} \]

Define: \(\bar{f}_c \in \mathcal{Q} \) associated to this combinatorial datum.

Example: \(\bar{f}_c \) have div 1, hence only characters, \(\bar{z} = 0 \).

\(k_{G(a, i, +)} \) is the HTW of \(\bar{f}_c \), i.e. \(v^+(P_c(z_i)) \).

\(6 = i(\bar{f}_c) \) iff \(\bar{f}_c \) is the ordinary of \(\bar{f}_c \).

We 6fractions we say that 6 is anti-ordinary.

Assume

\[(\text{Reg.) } \mathcal{F}_{c_i} \text{ non red, regular } \]

\[(\mathcal{F}_c) \text{ mod assum. } \]

\[\prod_{i=1}^{r} \bar{P}_i \]

\[\forall (a_i), \; a_i \leq d. \]

\[T \text{ mod } \mathcal{I}_{k_{c_i}} = \bar{f}_c \bar{P}_1 + \cdots + \bar{f}_c \bar{P}_n, \; \bar{f}_c : \Gamma_{E, s} \to GL_d(\Lambda/\mathcal{I}_{k_{c_i}}) \]

Theorem

Let \(\mathcal{I}_{k_{c_i}} \subset \mathcal{I}_{k_{c_i+1}} \). \(\forall i \), \(\bar{f}_c \circ \bar{f}_c \) is a trianguline deformation of \((\bar{P}_c, \mathcal{F}_{c_i}) \) with explicit parameters, e.g.

\[\bar{f}_c \circ \bar{f}_c \]

Moreover \(\forall a \in \mathbb{R}^{1,13}, \; k_{G(a)} \text{ is constant.} \)
Consider: Assume that \(\mathcal{E} \) is a birational, and that \(\mathcal{M} = \mathcal{M}_1 \) fulfills:

Then each \(k_i \) is of \(\mathcal{A}/I_k \), and \(\mathcal{A}/I_k \) has dual \(0 \).

i) If \(\mathcal{E} \), \(\hom(\mathcal{F}_i, \mathcal{F}_{-1}) = 0 \), then each \(g_i \) is crystalline.

Moreover:

(ii) follows from theorem and construction of \(E \).

(iii) This follows from lemma 2.

Theorem: Basically similar to the fixed case, but extra difficulties:

coming from the fact that there is no free module \(\mathcal{O} \) over \(T \).

Use lemma 6 to get a good module \(\mathcal{M}_1 \)

structural \(\Rightarrow \) become free after a blow-up \(\overline{\mathcal{O}} \Rightarrow \mathcal{O} \) free.

get a family of const. periods above

we prove a lemma showing that \(\ell(\text{Dwyg}(\mathcal{Y})\mathcal{Y} = \mathcal{F}_1) \) is as we expect \((\ell(\mathcal{A}/I_k)) \), and some part of \(\mathcal{M}_1 \) in free enough

to get the result.

Step (constant weight lemma)

\(\mathcal{V} \) rep of \(\mathcal{G} \), smaller in \(\mathcal{D} \).

Assume that \(\text{Dwyg}(\mathcal{V}_\lambda) \) has dual \(1 \) and it \(\mathcal{F}_1 \) is 0.

Assume that \(\mathcal{V}_\lambda \) def. such that \(\text{Dwyg}(\mathcal{V}_\lambda)^\mathcal{Y} = \mathcal{F}_1 \), \(\lambda \in \mathcal{X} \).

over \(\lambda \) then \(\mathcal{V}_\lambda \) is a constant \(\mathcal{H} \mathcal{W} \) of \(\mathcal{V}_\lambda \).