April 13, 2006. Thursday 1:00pm. Kevin Buzzard.

16th lecture

smooth irred.

O-rep'n

of $GL_2(O)$

V

1-dim

\leftrightarrow

T-semi-simple

(g, N) 2-dim. WP rep'n

\leftrightarrow

g st a non-zero

V exact, but $n = 0$
Local - Global compatibility

\[f: \text{cusp form} \rightarrow \pi_g \quad \text{loc. LAN} \quad R^F \]

1-dim case

doesn't occur

At the end of last lecture:
We were considering the mod p picture:

How the non-generic case can occur in global setting?

Q) Is there a mod p local Langlands for $\text{GL}_2(\mathbb{Q}_p)$?

Observation: there is not such a correspondence, if we further demand:

1. Irreducible mod p rep'n of $\text{GL}_2(\mathbb{Q}_p) \rightarrow \text{Galois rep'n}$
2. Compatibility with reduction mod p of classical local Langlands

Dumb reason:

Existence of rep'n of $\text{GL}_2(\mathbb{Q}_p) \rightarrow \text{Aut}(V_{\mathbb{Q}_p})$

where reductions are reducible

e.g. $I(x_1, x_2)$

\[x_1, x_2 : \mathbb{Q}_p^\times \rightarrow \overline{\mathbb{Q}}_p^\times \]

\[x_i(p) = p \text{-adic unit} \quad x_1/x_2 \equiv 1 \ (\text{mod } p) \]

Jettison: 1 reducible

Allow possibility of it's associated to p's
Local Langlands is becoming a "recipe" from ρ's to Π's.

Example: if ρ is cyclo $\otimes \chi$, the mod p Galois rep'n ρ_{χ}, then the associated Π will have ≥ 2 I-H factors.

1. $\not\equiv -1 (p)$ then 2
2. $\equiv -1 (p)$ get 3

All but 1 are 1-dimensional and one is ∞-dimensional.

$I(\chi_{1}, \chi_{2}) \not\equiv I(\chi_{2}, \chi_{1})$

up mod p characters of ρ_{χ} of ρ_{χ}

If $\chi_{1}/\chi_{2} \equiv 1 \pm 1$

Then one has a 1-dimensional, one had a 1-dimensional.

Next step:

Local-Global

For overconvergent finite slope cuspidal eigenforms $\tilde{\Pi}_{f}$, p-adic HMs, rep'n of ρ_{χ}

Alex Paulin has constructed $\tilde{\Pi}_{f}$ p-adic overconvergent eigenforms which are smooth admissible rep of ρ_{χ}.

ρ_{χ} exists & we can ask how to relate $\tilde{\Pi}_{f} | D_{f}$ & $\tilde{\Pi}_{f}$. It seems that $\tilde{\Pi}_{f}$ is not always irreducible

Similarly ρ_{χ} irreducible. Hence no reason to be genuine.

Π_{f} could be unram $\otimes \epsilon$.

& e.val of $\epsilon_{f}(\text{Tr}_{\overline{\mathbb{F}}}^\mathbb{Q}_{p})$ could be $\frac{\beta}{\alpha} e_{\chi} \overline{\chi}$, $\alpha/\beta = 1 - \ell$

$\Pi_{f} \otimes \epsilon$ = reducible unram ρ_{χ}

C-ind $\rho_{\chi} \otimes \epsilon_{\chi}$ Stemberg in the gap.
Again it looks like there's some kind of "correspondence" $S \rightarrow T$

T may not be reducible.

Remark: The mod p story is connected to level raising & lowering.

1. If T_l is a char 0 mod. form of level N, let N.

 & if P_l is the mod p repln

 & P_l (mod 2) have evens α, β, $d/\beta = l$

 then? G_l level N_l new at l.

2. If G_l is a form of level N_l.

 new at l

 & if P_l is unramified @ l then?

 $\exists T_l$ level N s.t. $\overline{P_l} = \overline{P_l}$?

yes in many cases (Mazur, Ribet)

In the p-adic theory,

there are analogous questions.

1. If T_l is a family of Eigenforms of level N.

 & $l \neq N_p$ & if P_l (mod 2) then evens α, β

 then? $\exists G$: family of forms of level N_l.

 generically new at l.

 but s.t. $\overline{P_l} = \overline{P_l}$?

$\square = p$

Terrifying things afoot.

Let E/Q be an elliptic curve with multiplicative reduc'n @ p.

Let f be the associated modular form

$? \leftarrow \square (\text{ord} = 1)$

Q. Relate $T_{f, p}$ to $P_l | D_p$?

Rule: $P_l | D_p$ has determinant the cyclic char. class which is infinitely wildly ramified.
\(\Pi_{p,p} \) will be a twist of \(\Pi_{st} \). It will be unramified twist by a character of order 2.

\(\Pi_{p,p} = \Pi_{st} \) unram. good twist of \(\Pi_{st} \) (non-split)

Split multi-case:

\(\mathbb{P}_p \mid \mathbb{D}_p \) we can write it down

Tate Curve: \(E(\mathbb{Q}) \cong \mathbb{Q}_p^\times / \langle \mathfrak{p} \rangle \), \(\mathfrak{p} \in \mathbb{Q}_p^\times \), \(|\mathfrak{p}| < 1 \).

\(\mathfrak{p} \) is determined by the fact that \(j \)-invariant of \(E \):

\[j = \frac{81}{744 + 18 \mathfrak{p} + \mathfrak{p}^2} \]

\(\mathfrak{p} \) is a global object.

\(\mathfrak{p}_f \mid \mathcal{D}_p = \begin{pmatrix} \text{cyclo} & \ast \\ 0 & 1 \end{pmatrix} \)

where \(\ast \) is an extn of \(1 \) by cyclo determined by \(\mathfrak{p} \).

Kummer Theory

\[\mathfrak{p} \in \mathbb{Q}_p^\times / \mathbb{Q}_p^\times \cong \mathbb{Z}_p \times \mathbb{Z}_p \]

Lots of different \(\ast \)s can occur.

Split multi-case

Rep by side \(" \Pi_{st} \"

Colors by side: only many possibility: \[\text{Mazur-Tate-Tatelebanum} \]

Greenberg - Stevenson

The hope that we can fix things up is chalked if we move to weight 4.

Set \(p = 5 \), \(N = 45 \), \(k = 4 \): compute the new \(\Pi_{st} \) for.

One example:

\[a_5^2 = \mathfrak{p}^{k-2} \]

\[\mathfrak{p}_1 = \mathfrak{p}^2 - 5 \mathfrak{p}^2 + 17 \mathfrak{p} + 5 \mathfrak{p}^5 - 30 \mathfrak{p}^7 + \ldots \]

\[\mathfrak{p}_2 = \mathfrak{p}_1^2 = \mathfrak{p}^2 - 3 \mathfrak{p}^2 + \mathfrak{p}^5 + 5 \mathfrak{p}^5 + 20 \mathfrak{p}^7 + \ldots \]

\(\Pi_{s,5} \cong \Pi_{s,5} \) unramified twist of Greenberg.
However,

\[f_1 = \frac{\text{form of } \omega + 4 \text{ & level } \delta}{\text{mod } 5} \frac{\text{rep.}}{\text{mod } 7} \sim -8^2 + 20 \times 7 + \ldots \]

Hence \(\overline{\mathcal{P}}_{\mathcal{S}_1} \mid \mathcal{D}_3 \) is \underline{irreducible}.

\[\text{Ind}(\omega) \]

\(\mathcal{P}_{\mathcal{S}_1} \cong \text{cyclo} \otimes \mathcal{P}_\mathcal{S}_1 \) \(\sigma \text{ at } 6 \), level 7 \(\mathcal{P}_{\mathcal{S}_2} \cong -8^2 + 6 \times 7^2 + \mathcal{P}_\mathcal{S}_2 \)

\(\mathcal{P}_{\mathcal{S}_2} \mid \mathcal{D}_3 \) is \underline{reducible} \(\quad \quad \quad \quad \quad \xi \)

\(\mathcal{P}_{\mathcal{S}_1} \mid \mathcal{D}_3 \) \(\mathcal{P}_{\mathcal{S}_2} \mid \mathcal{D}_3 \) are completely \underline{different}.

On the other hand,

T. Saito proved \underline{local-global compatibility at } \(p \) for \underline{classical modular forms}.

\[\text{[Ind}_{\mathcal{P}}, \text{P doesn't determine } \mathcal{P}_\mathcal{S} \mid \mathcal{D}_p \text{, but } \mathcal{P}_{\mathcal{S}_1} \mid \mathcal{D}_p \text{ does determine } \text{Ind}_{\mathcal{P}}, \text{P}] \]

Primes

Let \(\mathfrak{p} : \text{Gal}(\overline{\mathbb{Q}}_p / \mathbb{Q}_p) \rightarrow \text{Gal}(\overline{\mathbb{Q}}_p) \) be a \underline{concrete} Galois rep'n

Fontaine defined a \underline{functor} \(\mathcal{D}_{\mathfrak{p}} \)

taking \(\mathfrak{p} \) to a "linear algebra object".

i.e. \underline{filtered} \((\mathfrak{p}, \mathcal{N}) \)-\underline{module}.

"Filtered \((\mathfrak{p}, \mathcal{N}) \)-\underline{module}" \(D_{\mathfrak{p}}(\mathcal{N}) = (B_{\mathfrak{p}} \otimes \mathcal{V})^\mathcal{N}_\mathfrak{p} \)

1. \(\text{fin dim. } \overline{\mathbb{Q}}_p - \text{v. ap } D \)
2. A \underline{bijective} \(\overline{\mathbb{Q}}_p \)-\underline{linear map} \(\mathfrak{p} : D \rightarrow D \)
3. A \(\overline{\mathbb{Q}}_p \)-\underline{linear endo} \(\mathcal{N} : D \rightarrow D \) s.t. \(\mathcal{N} \mathfrak{p} = \mathfrak{p} \mathcal{N} \mathfrak{p} \)
4. A \underline{filtration} \(\text{Fil}^i D , \text{ie, } \mathbb{Z} \)

\(\text{st} \)

\(\text{Fil}^i D = \text{Fil}^i (D) \)

\(\cup \text{Fil}^i D = D \quad \cap \text{Fil}^i D = 0 \)
Easy to check that if \(f : G_{\mathfrak{f}} \to \text{Act}_{\mathfrak{Q}}(V) \) is a non-rep'\(^\prime \),

then \(\dim_{\mathfrak{Q}}(D_{\mathfrak{f}}(p)) \leq \dim_{\mathfrak{Q}}(V) \). If equality holds, \(V \) is said to be semi-stable.

Further, \(D_{\mathfrak{f}}(p) \) is a filtered \((\mathfrak{Q}, N)\)-module.

Weakly admissible

If \(D \) is a filtered \((\mathfrak{Q}, N)\)-module

\[
\text{Define } t_H(D) = \sum_{i \in \mathbb{Z}} \text{dim}(\frac{\text{Til}^i(D)}{\text{Til}^{i+1}(D)}) \cdot i
\]

& \(t_N(D) = \sum_{\alpha \in W} \text{dim}(D_{\alpha}) \cdot \alpha \)

slope of generalized eigenop.

\(t_N(D) = \sum_{p \in W} v(p) \times \text{v}(x) \)

roots of char poly of \(p \)

\(v(p) = 1 \).

\(D \) is weakly admissible means

\(1. t_H(D) = t_H(D) \)

\(2. t_H(D') \leq t_H(D) \) for all \((\mathfrak{Q}, N)\)-stable subobject of \(D \).

\(\text{i.e. } D' \subseteq D \) s.t.

\(1. q(b') \subseteq D' \)

\(2. N D' \subseteq D' \)

\(3. \text{Til}^i D' = \text{Til}^i (D \cap D') \).

Trostam checked that if \(V \) was semi-stable

then \(D_{\mathfrak{f}}(V) \) was weakly admissible.

\& the functor \((\text{semi-stable} \quad \text{adm. rep'}\(^\prime \)) \to (\text{w. fitting} \quad \text{\((\mathfrak{Q}, N)\)-module}) \) was fully faithful.

Much more recently, Trostam & Colmez, showed

Upshot. if \(V \) is semi-stable, we can recover \(V \) from \(D_{\mathfrak{f}}(V) \)

\& we can "list" all the possibilities for \(D_{\mathfrak{f}}(V) \).
if P is a modular form of level N (not N') and P_{N_p} has trivial N_p-multiplicities, then $P_{p} \mid P_{N}$ is semi-stable.