Mar 9, 2006. Thursday. 1:00pm - 2:20pm
Kevin Buzzard (8th)

101 ≤ 1 → nonconvergent series?

Recall I talked about

\[W \]
\[W^+ = \text{half of them} \]
\[W^0 = \text{one of them} \]

1-adic \(\mathbb{F}_p \)-extension \(W^+ \)

Eisenstein family lives over \(W^0 \)

\(V_k \in W^0 \) there's a power series

\[\exp V_k = 1 + \sum_{n=1}^{\infty} \frac{V_k^n}{n!} \in \overline{Q}_p \]

& \(\mathcal{O}_{E_\infty} \) \(V_n \geq 1 \)

\(\mathcal{E}_k \in \mathcal{O}_{E_\infty} \) \& \(\mathcal{E}_k = 1 \in \overline{\mathbb{F}_p} \)

Integers of \(\mathcal{O}_p \)
Recall a q-exp $F \in \mathcal{Q}_g^R$ is an overconvergent modular form if ω be ω_0, if F/E_k is the q-exp g of an overconvergent modular form.

Indeed, if G with $\omega \Rightarrow F \in \omega$, $k \in \omega$

If F is overconvergent at ω, then T is a Hecke operator

Then $T \omega$ is overconvergent.

Here's one proof.

Let ω be any non-constant.

$U : R \mathcal{Q}_g^R \rightarrow R \mathcal{Q}_g^R$, $U(\Sigma_{\omega_0} \omega_0) = \Sigma_{\omega_0} \omega_0$

$V : R \mathcal{Q}_g^R \rightarrow R \mathcal{Q}_g^R$, $V(\Sigma_{\omega_0} \omega_0) = \Sigma_{\omega_0} \omega_0^+$, $U \circ V = \omega$, $(V \circ U) \circ \omega$

and more generally

$U(F \mathcal{Q}(G)) = \mathcal{Q} \mathcal{U}(F)$, $T \mathcal{G} \in \mathcal{Q}_g^R$

Recall there's a Hecke operator U on overconvergent modular forms.

Let us explain why. If F is overconvergent

Then $U(F)$ is too.

It's a theorem of Coleman that if V_k denote $V(E_k)$

Then E_k/V_k is the q-expansion of an overconvergent modular form.

(Q) How far does it overconverge? I

Using this, then, we easily deduce that U preserves cut at

Say F is overconvergent at ω

Then $F = E_k G$, G overconvergent at ω

$U(F) = U(G, E_k)$

$= U(G, E_k)$, $\frac{V_k}{V_k}$

$= U(G, \frac{E_k}{V_k}) = E_k \times U(\frac{G \circ E_k}{V_k})$

$\frac{U(F)}{E_k}$ is overconvergent at ω. $U(F)$ is overconvergent at ω

This argument proves that U is q-exp g of form with

as long as r is small.

Thus, for n-overconvergent ω_0^g means ω_0 on ordinary locus.
because if G is ε-overconvergent, then $G \times E_k \rightarrow \frac{V_k}{pK}$

U of it is $p\varepsilon$-overconvergent.

Now restrict back to ε-overconvergent

Argument shows this

If ε is small, define ε-overconv. set k forms

$:= \varphi \exp' \left(\chi \right)$ s.t. $\text{F}_k/E_k \nabla \varepsilon$-overconvergent.

U is a d.c. map on ε-overconvergent map $U \rightarrow \varepsilon$-overconvergent

$\text{opt} \downarrow \text{ree} \left(\text{opt} \right)$

U-action on ε-overconvergent

Some set k have a Char. power series $P_k(T) = \text{det}(1 - TU)$

Just as in w.t.o. this QPS is indep of $\varepsilon > 0$.

Here's an idea then:

For any $\delta \in W^o$, plot the zeroes of $P_k(T)$

in $\mathbb{A}^1 / \mathbb{F}_p$ (wonder space)

As k varies, you get a subset of $W^o \times \mathbb{A}^1$

$p(k), E_0 = 1 \& \delta \times k$ is close to 0,

$E_k = 1 \mod \text{big power of } p$

This picture is called the spectral curve associated to δ.
How does one construct it properly?

Remember the lecture when I did Serre’s Endomorphisms’ paper?

I defined a CPS for a cpt operator on an ONtable pre-Ronch space.

We want to generalize this to ONtable Banach modules over a complete ring of some kind.

E.g., let R be the ring $\mathbb{Q}[T]$. Norm $\|R \| = \max |a_i|$

Can define a Banach module over R as a complete normed R-module $M + axioms \| m \| \leq 1 \| m \|$, etc.

Key example: an ONtable one.

Pick a set I. E.g., $I = \{1, 2, 3, \ldots\}$

Set $M = \text{fns } f : I \rightarrow R \\text{ s.t. } f(i) \rightarrow 0 \text{ as } i \rightarrow \infty$

One defines cts & cpt operators on such things.

Finite rank: $\text{Fin } f \leq \text{fns } \text{ gen. } R$-module

Cpt: limit of finite rank

Cpt ops have a CPS of some $d \in R[[T]]$

Idea: if $D \subset W^0$ is a small closed disk, let’s define the

$\text{O}(D)$-module of ε-overconvergent forms on D

to be the fns on $D \times X(N)$.

Remark: I am thinking about an overconvergent at κ

form as being equal to an overconverged form on $X(N)_{\text{ord}}$.

Define the ε-expansion of such an object m being the cuntz

ε-expn on $(\text{O}(D) [\varepsilon])$

$\times E_D$ where E_D is ε-expansion of Eisenstein“Heart” over D.
\[E_k = 1 + \sum_{n \geq 1} a_{n,k} g^n \]

where \(A_n \) is a \(\mathbb{F}_q \)-valued Eisenstein family at once, as being an element of \(\mathcal{O}(W^0) \mathbb{F}_q \).

\[1 + \sum_{n \geq 1} A_n g^n \]

In fact one can check that \(W \) is the usual parameter of \(W^0 \) space.

\[k(1+\ell) = w+1 \]

\[\text{if } s \neq 0 \]

then \(E \in \mathbb{Z}_p \mathbb{F}_q \).

This is a "computable object."

In fact \(\frac{2}{s} \in \mathbb{W}_p \mathbb{F}_q \) (pole of \(s \) at \(w_0 \)).

\[E \in 1 + w g \mathbb{Z}_p \mathbb{F}_q \mathbb{W}_p \mathbb{F}_q \]

Define \(V = \mathcal{V}(\mathbb{F}_q) = \mathbb{E}(g) \in 1 + w \mathbb{Z}_p \mathbb{W}_p \mathbb{F}_q \)

\[E/V \in 1 + w \mathbb{Z}_p \mathbb{W}_p \mathbb{F}_q \]

one can now specialize to \(w = w_0 \in W \) weak

& recover \(E_k/V_k \).

Explicit analysis of \(2 \)-adic spectral curve near boundary of \(W_0 \).

Exciting new parameter!

\[E_2 = \text{classical } 2 \text{-level } \mathcal{E}_2 \text{ Eisenstein} \]

\[\frac{1}{1 + 2 A (g + g^2 + \ldots)} \]
\[V_2 = V(E_2) \] classical w/ 2 levels

\[\frac{E_2}{V_2} = 1 + 2t + \ldots \] meromorphic on \(X_0(4) \)

Set \(y = \frac{E_2}{V_2} - 1 \) = \[9 - 20q + 462q^5 + \ldots \in \mathbb{Z}[q] \]

\[y : X_0(4) \rightarrow P^1 \]

Recall \(f = \frac{\Delta(q)}{\Delta(q^5)} = X_0(2) \rightarrow P^1 \) & one checks that

\[f = \frac{y + 8qy^2}{1 - 8qy^2} \]

In particular, the natural map \(X_0(4) \rightarrow X_0(2) \) induces an isomorphism between regions \(|q| \leq 1 \) & \(|q^2| \leq 1 \).

So more generally between \(|q| \leq d \) & \(|q^2| \leq d \) & \(d \leq 8 \)

\[X_0(2) \]

ord. locus
\[\begin{array}{c|c|c}
|q| & |q^2| & d \\
\hline
1 & 1 & 1 \\
1 & d & d \\
1 & 8 & 8 \\
\end{array} \]

due: \(q \) & \(y \) are parameters

Now we use powers of \(y \) instead of \(q \)

What is the matrix of \(U \) on overconvergent at \(\mathfrak{m}_2 \) some

sort basis \(V_k, V_k(qy), V_k(qy)^2, \ldots \in F \sqrt{2} \\

One can answer this question \(\iff \) one knows how to write

\[E_k/V_k \] as a power series in \(y \)

Here's what I know

If \(k \in W^0 \) & the parameter \(W = w(s) = h(s) - 1 \) satisfies \(|w| \leq \frac{1}{8} \)

then Kilford & I showed that \(E_k/V_k \in \mathcal{O}_2 [q, qy] \)

Next time I'll show you why.
Next time I'll show you why.

In fact we really prove that

\[E/V \in \mathbb{Z}_5 \{ w, y \} \] is also in \(\mathbb{Z}_5 \{ \frac{w}{8}, y \} \)

\[|w| < \frac{1}{5}, |y| < \frac{1}{8} \]
\[|w| = \frac{1}{5}, |y| = \frac{1}{8} \]

\[E/V \in \mathbb{Z}_5 \{ w, y \} \cap \mathbb{Z}_5 \{ \frac{w}{8}, y \} \]

\[= \mathbb{Z}_5 \{ w, w', y, y' \} \]

Consequence: If \(w = w_0, w_0 \in C_2 \), \(|w| > \frac{1}{8} \), \(w \in W \)

then \(E/k \in C_2 \{ w, y \} \)

What happens is that \(E/k \) being very overconvergent in center of cut space.

\[\Rightarrow \text{a little overconvergent at boundary} \]

Moreover, if \(E/k = q_k(w_0, y) \cdot q_k \in C_2 \{ x \} \)

then for \(|w| > \frac{1}{8} \), \(q_k \in C_2 \{ x \} \) is independent of \(k \)

as one checks easily that \(q_k = \sum_{n=0}^{\infty} C_n \cdot x^n \)

\[\text{if } E/V = \sum_{ij} q_{ij} w_i y_j \]

One can even compute \(q_k \) by choosing one \(k \in W \)

near boundary & hashing it out

e.g. choose \(k: \mathbb{Z}_3^x \rightarrow \mathbb{C}_2^x \)

\[\chi(k) = \{ x \mid x = 1 \mod 4 \} \]
\[\cup \{ x \mid x = 3 \mod 4 \} \]

\(k \leftrightarrow \text{classical point } (\chi, \bar{k}). \) \(k = 1 \)

\(W = k(5)-1 = 4. \) \(|w| = \frac{4}{5} > \frac{1}{8} \)

One checks that \(E_k = \sum_{a, b \in \mathbb{Z}_3^x} q^{a+b} = 1 + a q + \cdots \)
$V_k = E_k(g^2)$ level θ.

$T_k = E_k/V_k$ is a modular form of level θ.

One wants this as a power series in g.

One checks that $T_k = (1+8g)k + (1+8g)^{-1}$ can solve $\sum g_k = \sum_{n=0}^{\infty} x^{a_k} - 1$.

Just as in θ, one gets one teeth. Can compute $U(\mathbb{C} g^2)^n$ as a power series in g

Then $U(V_k(\mathbb{C} g^2)) = E_k(\mathbb{C} g^2)^n = E_k, V_k, U(\mathbb{C} g^2)$

Now get a formula for matrix entries $g_k(\mathbb{C} g^2)$

For some entries, all we know is a lower bound on valuations.

For some entries, we know what valuation is.

Big matrix representing U must look like

$$
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0
\end{pmatrix}
$$

One checks easily that one can throw away all rows & corresponding columns & not change CPS.

The new matrix has the property that W_i divides i-th row & furthermore, if you divide i-th row by W_i, the resulting matrix has the property that det S_i is the lowest

and W_i is always a unit.

\Rightarrow slopes of CPS are $1, 1(w), 2v(w), 3v(w)$.

Pictures of 2-edge spectral curve \ldots