Recall notation:

\[\mathcal{O} = \frac{\Delta(q^d)}{\Delta(q)} \]

\(\Phi: X_0(2) \to \mathbb{P}^1 \)

\(\Phi: X_0(2) \to \mathbb{P}^1 \)

\(\frac{1}{3} = \frac{\Phi}{(1+256 \Phi^2)} \)

\(\frac{1}{3} = \Phi + \cdots \in \mathbb{Z}[\frac{1}{3}] \)

In particular, \(\frac{1}{3} = \Phi + \cdots \in \mathbb{Z}[\frac{1}{3}] \)
Barten: \(\frac{2^g}{3} = 2^{g-1} \cdot e \cdot \mathbb{Z}_2 \{2^g \cdot 3 \} \)

\[2^{g-2} = \frac{2^g}{3} + e \cdot \mathbb{Z}_2 \{2^g \cdot 3 \} \]

- even if \(|g| \) is a little less than \(1 \)
- there's a canonical \(g \)-associated \(\delta \)
- i.e. a section of the "forget" map.

So picture is

\[X_0(1) \]

Recall a 2-adic modular form is a (2-adic) holomorphic form on \(X_0(1) \) such that extends a little into the missing disc

\(|\delta| > 1 \) = closed disc \(|\delta| \leq 1 \) = closed disc \(|\delta| < 1 \)

i.e. an element of \(\mathbb{Q}_\ell \langle \delta \rangle \)

An overconvergent 2-adic modular form is a form on \(X_0(1) \) such that extends a little into the missing disc.

e.g. choose \(\delta \), \(1 < |\delta| \)

Consider the subgroup

\(\mathbb{Q}_\ell \{2^g \} \)

- any element \(f \) is overconvergent
- the bigger \(\delta \) is, the more overconvergent you are

Hecke ops

Classical modular forms come with Hecke operators

\(T_2, T_3, T_5, \ldots \)

What are Hecke operators?

If a modular function is a "function on elliptic curves" (Katz)

\[E \rightarrow f(E) \]

then \(T_q f \) (at prime) is

\[\frac{1}{q} \sum_{c \in E} f(E/c) \]
In our p-adic setting, a p-adic modular function is a form on ordinary elliptic curves. It's well-known that anything *almost* to ordinary is ordinary. So it makes sense!

$$L \supset \mathbb{C} \stackrel{P(E/C)}{\rightarrow} \mathbb{C}$$

Get a bunch of continuous endomorphism of the space of p-adic modular functions. So they all commute.

A nice thing to have, though would be one compact operator.

If $\varphi : V \rightarrow V$ is opt.

then we can start pulling off finite-dim subsp. of V (generalized eigenspaces for φ. non-zero eigenvalue.)

So they will be stable under all the other Hecke operators.

I don't know any natural such things though.

However, if we consider overconvergent forms, one does appear.

Recall from last time.

If E/O, that supersingular but not too supersingular reduction, then amongst the 3 reps of order 2, one sticks out, with respect to valuations of coordinates.

Formal groups:

$$x = \frac{y}{g^2}$$

Parameter for the formal gp of elliptic curve.

g^2 = cubic of x.

What I did last time was to show that the 3 points of order 2 in the formal gp of the curve were in 2 classes.

duo to had one norm the third one (canonicale) had a different norm.

Formal gp = $O_2 \times \mathbb{Z}/2 \mathbb{Z}$

$[2]z = \text{power series in } z$
Zeros of power series

\[\text{pts of order dividing } 2 \text{ in formal } \mathbb{G}_p \]

\[\mathbb{G}_p \]

\[\mathbb{E}/\mathbb{G}_p \]

\[\pi : \mathbb{E}/\mathbb{G}_p \rightarrow \mathbb{E}/\overline{\mathbb{G}_p} \]

\[(x \mod 2) \rightarrow \mathbb{E}/\overline{\mathbb{G}_p} \]

In ordinary case, amongst the 3 pts of order 2, only one is in the disc.

In supersingular case, all 3 pts of order 2 are in disc.

Ordinary case

\[[2] Z = 2Z + \text{const } Z^2 + \ldots \]

& (Newton polygon) \(
\begin{array}{c}
\text{const} \\
\text{is a 2-adic unit}
\end{array}
\) \(Z = -\frac{a}{2} \) is close to another root.

In non-ordinary case,

\[[2] Z = 2Z + a^2 Z^2 + b Z^3 + c Z^4 + \ldots \]

\(a \) is now a unit.

\(a \) is not a unit.

But \(2 | b \) because \(\text{mod } 2 \mathbb{G}_p \).

\[[2] Z \text{ is a lift of } Z^2. \]

Newton polygon when \(|a| < 1 \) but only just.

\[\text{If } v(a) < \frac{2}{3}, \text{ one can spot a canonical root.} \]

All done for general \(p \) in Katz's paper.

\(p > 2 \) no harder than \(p = 2 \).
\(Q = 0 \quad \text{ord. case} \)

\(Q > 0 \quad \text{but } \frac{Q}{p} < \frac{p}{p+1} \)

get \(p-1\) canonical sel's & \([p]Z = 0 \quad \& \quad \text{these are the canonical subgp.} \)

Upshot: the canonical subgp of an ell curve \(E/K\) depends only on the formal gp associated to \(E \times_0 (2) \)

\[
\begin{array}{c}
|F| \leq 1 \\
(E, C) \quad \text{C canonical} \\
C \text{ will exist when } \langle a \rangle \text{ is small}
\end{array}
\]

Miracle: if \(d\) is prime, \(d \neq 2\), then \(E\) & \(E/D\) have isomorphic formal groups!

\[
P \subset E \text{ a subgp of order } d
\]

\[
E \xrightarrow{\varphi} E/D \xrightarrow{\varphi^p} E
\]

End (formal \(q^t\)) \(\cong \Z_p \times \Z \)

\[
\text{& } d \in \Z^x
\]

So the Hecke operators

\[
T_d \& \varphi \text{ don't change } |F| \text{ as long as } 1 < |F| < \text{ small thing}
\]

Conclusion:

\[
T_d \text{ acts on } \Q(2^t \varphi) \text{ for } 1 \leq t \leq 7 \text{ as well if } d \neq 2.
\]

\(
\bullet \) Unfortunately, \(T_2\) doesn't preserve \(\Q(2^t \varphi)\) if \(1 \leq t \leq 9\)

\(T_2\) "makes things coarse"
Can we see what's happening?

\[X_0(y) \]

Say we know \(j(E) \) & it has norm 1-2.

Let \(C \) be one of the subq's of \(E \) of order 2.

What is \(j(E/C) \)?

Answer is given by the classical modular polynomial

\[\Phi_2(X, Y) \]

a polynomial deg 3 in each variable s.t \(\Phi_2(j(\omega), j(\omega')) = 0 \)

\[E = \mathbb{Q}/\mathbb{Z} \oplus \mathbb{Z}/4 \]

\(\mathbb{Z}/4 \) contains

\[E/\mathbb{Q} = \mathbb{Q}/\mathbb{Z} \oplus \mathbb{Z}/2 \]

Recall

\[\Phi_2(X, Y) = X^3 + (-Y^2 + 1488Y - 162000)X^2 \]

\[+ (1488Y^2 + 7703375Y + 8743800000)X \]

\[+ (y^3 - 162000Y^2 + 8743800000Y - 1574640000000) \]

Check \(\text{sub. in } Y = 2 \)-adic unit

All 3 roots for \(X \) should be units \(\omega \)

Now \(\text{sub. in } Y = y \in \mathbb{Q}_2 \)

\[1 - \omega = |y| < 1 \]

Hope: all 3 roots for \(X \) have \(|y| < 1 \) & \(T_2 \) should exist
Newton polygon

![Newton polygon diagram]

Conclusion:
- If \(v(j(E)) = 0 \), \(c = 8 \), then \(v(j(E/c)) \) is either \(2c \) (once)
- \(E/c \) s.s. reduction, \(v(j(E)) = 8 > 0 \) \(\frac{a+2c}{2} \) (twice)

3 subgps order 2, of which 1 is different
- 3 answers for \(j(E/c) \), one of which is different.

Fact: Obvious guess is correct! The canonical subgp gives rise to a totally different \(j \)

So in fact, \(T_2 \) breaks up into 2 Hecke operators

\[
(T_2 \Phi)(E) = \frac{1}{2}(\Phi(E/c_1) + \Phi(E/c_2) + \Phi(E/c_3))
\]

\(\Phi \) if \(E \) is ordinary or not \(\frac{a+2c}{2} \) supersingular
then one of the \(c_s \), say \(c_1 \) is canonical

Define \((V\Phi)(E) = \frac{1}{2} \Phi(E/c_1) \)

\& \((U\Phi)(E) = \frac{1}{2} (\Phi(E/c_2) + \Phi(E/c_3)) \)

\(U \) involves elliptic curves s.t. valu of \(j \)-invariant
has gone down.

\(U \) (but not \(V \)) will induce an endomorphism of \(\mathbb{Q}_2(\zeta_2, \Phi) \)

(\& all this works for general \(N, p \))

(Play around with power series \(\{p j \mathbb{Z}_p \} \))

In fact more is true \(V \) of \(j \)-invariant was being divided by \(2 \)
when we applied \(U \).
Pictorially,

\[|s| < 1 \]

So we in fact see that \(U \) is a cont. map

\[\mathbb{Q}_p \langle 2^t f \rangle \rightarrow \mathbb{Q}_p \langle 2^{2t} f \rangle \rightarrow \mathbb{Q}_p \langle 2^{3t} f \rangle \]

for \(t \in \{1, 2, 3\} \)

More generally, \(U \) is a continous map from "r-overconvergent \(p \-\)adic modular forms" to "i-r-overconvergent \(p \-\)adic modular forms".

\(U " \) increases over convergence."

Consequence:

The induced map \(U : \mathbb{Q}_p \langle 2^t f \rangle \rightarrow \mathbb{Q}_p \langle 2^{2t} f \rangle \) (\(t \leq 3 \)) is cont.

\(\textbf{Pr.} \) \(U \) is composition of a cont. map & the inclusion.

\[\mathbb{Q}_p \langle 2^t f \rangle \rightarrow \mathbb{Q}_p \langle 2^{2t} f \rangle \& \text{ this is cont.} \]

\[\text{cont. composites = cont.} \]

\(\mathbb{Q}_p \langle T \rangle \) has an ON basis

\[1, T, T^2, T^3, \ldots \]

\(\text{w.r.t. the obvious basis } 2^t \times 2^t f \)

the inclusion \(\mathbb{Q}_p \langle 2^t f \rangle \rightarrow \mathbb{Q}_p \langle 2^{2t} f \rangle \)

has matrix \(\begin{pmatrix} 1 & 2^t \\ 2^t & 2^{2t} \end{pmatrix} \)

Bond entries.

All \(\leq 2 \) under heat line.
Remark
\[U = U_2 \text{ on } X_0(2), \quad U_2 f(\ell, \mathcal{O}) = \frac{1}{2} \sum_{D|\ell} f(D, \mathcal{O}) \]

Effect on \(q \)-expansions

An elementary computation with Tate curves gives that
if \(f = \sum a_n q^n \) is a \(\mathbb{Q} \)-adic modular form, then \(U f \)
has \(q \)-expansion \(\sum a_n q^n \).

More generally, for any \(f \),
\[U(\sum a_n q^n) = \sum a_{np} q^n \]

\& \quad V(\sum a_n q^n) = \prod (1 - q^n) \sum a_n q^n.

To make our life easier, let's redefine \(V \)
so \[V(\sum a_n q^n) = \sum a_n q^n. \]

In general, \[V(\sum a_n q^n) = \sum a_n q^n \]
is an endomorphism of space of \(p \)-adic modular forms (not over \(\mathbb{Q} \)).